
On Uniform Convergence and Low-Norm Interpolation Learning

Overview

• The phenomenon of Interpolation learning - achieving low 

population error while training error is exactly zero in a noisy, 

non-realizable setting, is one of the core mysteries in deep 

learning

• Uniform convergence is the fundamental technique used in 

learning theory: 

Negative result in the norm ball
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• In this work, we investigate whether uniform convergence is 

sufficient to explain the success of minimal norm interpolator, the 

solution found by gradient descent methods, in an underdetermined 

noisy linear regression model.
• t

Negative result in algorithm-dependent sets

Setting
High dimension linear regression with “junk” features

Minimal norm interpolator

Positive result with “interpolating” UC

The generalization gap over even the smallest norm ball that 

contains the minimal norm interpolator diverges in the asymptotic 

regime where consistency is possible

• We show that there is no algorithm-dependent hypothesis class 

that we can use to prove consistency

• Consider all interpolating predictors with small norm (𝜶 times 

minimum norm)

• Sup is over intersection of norm ball with (sample-dependent) 

interpolation hyperplane

• Get exact risk of worst interpolator in ball: 𝜶^2 times Bayes risk

• Our proofs rely on a novel technique based on strong duality, 

which we think may be broadly applicable. 

• Computing the generalization gap over our hypothesis class is 

equivalent to solving a quadratically constrained quadratic program

(QCQP). 

• The dual is an one dimensional problem, which is much easier to 

analyze

• A complexity term, which we call restricted eigenvalue under 

interpolation, naturally appears in the derivation of the dual.

We show in our testbed problem that

• uniformly bounding the difference between empirical and population 

errors cannot show any learning in the norm ball

• uniform convergence over any set, even one depending on the 

exact algorithm and distribution, cannot show consistency

• but uniform convergence of zero-error predictors in the norm ball 

is sufficient to explain interpolation learning

• moreover, uniform convergence shows that near minimal norm 

interpolators can also achieve consistency and it can predict the 

exact worse-case error as norm grows 
• t

Summary of results
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As the minimal norm diverges, the theorem shows that many small but 

not minimal, norm interpolator can also enjoy consistency.

Proof technique and speculative bound

Uniform convergence of zero-error predictors
Visualization of hypothesis class 

• Equivalent to ridge regression on signals, hence consistent

• This is the tightest notion of uniform convergence if the hypothesis 

class is not allowed to depend on the training samples.

• Similar result can be found in [Negrea et al. 2020]

• We show this not only for minimal l2-norm interpolation, but for all 

“natural” consistent interpolators such as the minimal l1-norm 

interpolator

for some suitable choice of 


