
Uniform Convergence of Interpolators:

Gaussian width, Norm Bounds and Benign Overfitting

Overview

• The phenomenon of Interpolation learning - 
achieving low population error while training error 
is exactly zero in a noisy, non-realizable setting, is 
one of the core mysteries in deep learning 


• Uniform convergence is the fundamental 
technique used in learning theory: 


But it does not seem to be tight enough for benign 
overfitting.


• We consider a different, yet standard notion: the 
uniform convergence of interpolators


In this work, we analyze the above gap for high 
dimensional linear regression with Gaussian data 
and arbitrary data covariance
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Summary of results

• We prove a generic bound in terms of an arbitrary 

class ’s Gaussian width

• Taking  to be the Euclidean norm ball and 

combining with an analysis of the minimal norm 
required to perfectly fit the data, we recover the 
consistency result of Bartlett et al. (2020) for the 
minimal  norm interpolator


• We extend this to any norm and prove novel result 
for the minimal  norm (basis pursuit)


𝒦
𝒦

ℓ2

ℓ1

L(ŵ) ≤ L̂(ŵ) + sup
w∈𝒦

|L(w) − L̂(ŵ) |

 L(ŵ) ≤ sup
w∈𝒦,L̂(w)=0

L(w)

Xi
i.i.d.∼ 𝒩(0,Σ), ξ ∼ 𝒩(0,σ2In), Y = Xw* + ξ

We assume the data  is generated as(X, Y )

where  are the rows of  and  are 
independent. When , there exists  such that

Xi X ∈ ℝn×d ξ, X
d > n w

Xw = Y ⟹ L̂(w) =
1
n

∥Y − Xw∥2
2 = 0

and we can consider the minimal norm interpolator

ŵ = arg min
w∈ℝd: L̂(w)=0

∥w∥

Benign overfitting: in many cases, it holds that 
. Bartlett et al. (2020) covers the case 

when  is the Euclidean norm.
L(ŵ) → σ2

∥ ⋅ ∥

Gaussian width: natural measure of “complexity” of 
a set, long used in generalization theory (e.g. 
[Bartlett-Mendelson, 2002])

Main result


Theorem (Informal): for any covariance matrix , 
for any splitting  such that 

, it holds with high probability that

Σ
Σ = Σ1 ⊕ Σ2

rank(Σ1) = o(n)

 sup
w∈𝒦,L̂(w)=0

L(w) ≤ (1 + o(1)) ⋅
W(Σ1/2

2 𝒦)2

n

Since it holds that

W(Σ1/2
2 𝒦) = B ⋅ 𝔼H∼N(0,Id)∥Σ1/2

2 H∥2 ≤ B2𝔼∥x∥2
2

our main bound shows

 sup
∥w∥≤B,L̂(w)=0

L(w) ≤ (1 + o(1))
B2𝔼∥x∥2

2

n

Norm bound: 

Plugging in, we establish consistency  
under the benign overfitting conditions

L(ŵ) → σ2

 ∥ŵ∥2
2 ≤ (1 + o(1))

σ2n
𝔼∥x∥2

2

rank(Σ1)
n

→ 0, ∥w*∥2
tr(Σ2)

n
→ 0,

n
R(Σ2)

→ 0

where
r(Σ) =

tr(Σ)
∥Σ∥

 and R(Σ) =
tr(Σ)2

tr(Σ2)
.

 norm ball (Basis Pursuit)ℓ1
The effective rank becomes

R1(Σ) = (𝔼∥Σ1/2H∥∞)2

maxi Σii

and the benign overfitting condition is

rank(Σ1)
n

→ 0, ∥w*∥1
𝔼∥Σ1/2H∥∞

n
→ 0,

n
R1(Σ2)

→ 0

This is satisfied, for example, by the “junk feature” 
model. We can also extend this to arbitrary norm.

W(𝒦) = 𝔼H∼N(0,Id) [ sup
w∈𝒦

|⟨H, w⟩ |]


