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Overview

* We study the generalization error for linear
models in high dimensions (such as minimal
norm interpolation) and introduce a new
approach to uniform convergence

* We show that the generalization gap can be
controlled by a quantity similar to the
Rademacher complexity, and we use our theory
to establish consistency and sharp non-
asymptotic guarantees even in
overparameterized & interpolation settings

Setting

* We consider a supervised learning setting with
x ~ A(0,X) and the distribution of y only

depends on x through 7, = (wl.*,x) fori = 1,....k.
For example,

l.y=(w*,x)+ ¢

2. Pr(y = 1) = sigmoid({w*, x))

3.y = (W, x){w*, x) + (wk, x)2&

* The test and training error associated with a
continuous loss function is denoted as

L (w,b) = E, g (W, x) + b, y)
L w, b) = % 2 F((w, 35) + by )

. WLOG, assume Zl/zw;k, e Zl/zw]zk are orthogonal

and define a projection matrix
k
_ T
Q=1-) wiwH'z
=1

and the Moreau envelope

[0, y) = inf flu,y) + A(u — 9)*

Main result

Let C be a continuous function such that w.h.p over
x ~ N(0,2), it holds uniformly over w € R4

(Qx,w) < C(w)

then under some mild conditions, w.h.p. it holds over all

(w,b) € R e R

2
L(w,b)<[1+0 <\/E> (tf(w, by + 1) )
n n

Applications

- For the square loss (y — $)? and squared hinge
loss (1 — y9), we have

N
L0,y) = = /,tf(y,y)

and so plugging in the main result, we get

2

C(w)?

n

L(w,D) < (1 + 0(1)) \/I:f(w, b) +\/

- If f is M-Lipschitz, then 0 < f—f; < M?/4), and
plugging In

C(w)?

n

L(w,b) < (14 o(1)) | Liw, b) + M\/

« If fis nonnegative and H-smooth, then we can
represent f = fy;, and Lf =0 = L;=0, and

so uniformly over all (w, b) such that Lf(w, b) =

2
Liw,b) < (1+ o(1)) ZI LW

n
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Norm-based generalization

Denote T+ = OQXQ’, we can pick C by

(0x, w) < 101l lIwl, < (\/Tr@i) ' 0<||zi||”2>> Iwll,

Recall the definition of effective ranks:

- Tr(%) - Tr(®)?
ARSI 1650

and we show that

i bﬂ)
. . " an(w :
Iwll5 < [Iw*l5 (1 0 (R(Zl) >> Tr(Z1)

Therefore, we have benign overfitting given that

2Tr (2L k
[w*{|5Tr(X7) . 0. n 0. < 0
n R(ZL) n

In both linear regression and classification settings,
regardless of model mis-specification
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Isotropic: n = 100, d = 120 Junk feature: n = 100, d = 2000
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