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Introduction

I Modern machine learning models often contain more
parameters than the number of training samples.

I In these situations, overfitting is a very important concern.
Understanding how high dimensional predictors can generalize
is a fundamental problem in statistical learning theory.

I Classical wisdom of ML: simpler model generalize better.

I Instead of looking at the number of parameters, we can use
norm of the predictor as a complexity measure (e.g.
Rademacher complexity Rn).

I Bias-variance tradeoff can be precisely quantified by uniform
convergence bounds.
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Classical Uniform Convergence Bounds

If we have a M-Lipschitz loss function, then it is well known that

L(w) ≤ L̂(w) + 2MRn.

Alternatively, if the loss is non-negative and H-smooth, then we
have

L(w) ≤ L̂(w) + Õ

(
HR2

n +

√
L̂(w) · HR2

n

)
which is also known as ”optimistic rate.”
These bounds work well for conventional high dimensional
problems because we can usually set L̂(w) ≈ L∗ (Bayes error) and
Rn ≈ 0 with a careful choice of regularization parameter.
Uniform convergence provides an easy and general approach
to establish consistency!
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Benign Overfitting

However, the same uniform convergence result cannot be used to
understand the benign overfitting phenemenon (achieving
consistency L(w)→ L∗ while interpolating noisy training data
L̂(w) = 0).
This is because plugging in L̂(w) = 0, the bounds become

L(w) ≤ 2MRn or L(w) ≤ Õ
(
HR2

n

)
and so Rn is at least Ω(1). Therefore, the exact multiplicative
factor 2M or Õ(H) need to be as tight as possible in order to
establish consistency.
Question: what is the tightest possible multiplicative factor?
Can it be used to show benign overfitting?
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Preview of Positive Results

For M-Lipschitz loss, we have (ignoring lower order terms)

L(w) ≤ L̂(w) + MRn

and for non-negative and
√
H/2 square-root Lipschitz loss (any

non-negative H smooth function satisfies this), we have

L(w) ≤ L̂(w) +
1

2
HR2

n +
√

2

√
L̂(w) · HR2

n

⇐⇒
√

L(w) ≤
√
L̂(w) +

√
H/2 · Rn

Benign overfitting: H = 2 for the square loss/squared hinge loss,
and if the minimal `2 norm interpolant is consistent, then R2

n ≈ L∗

and uniform convergence can recover consistency.
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Gaussian Multi-Index Model

The data {(xi , yi )}ni=1 are independent and identically distributed
(i.i.d.) and follow some data distribution D given by

(A) d-dimensional Gaussian features with arbitrary mean and
covariance: x ∼ N (µ,Σ)

(B) a generic multi-index model: there exist w∗1 , ...,w
∗
k ∈ Rd , a

random variable ξ ∼ Dξ independent of x (not necessarily
Gaussian), and an unknown link function g : Rk+1 → Y such
that

ηi = 〈w∗i , x〉, y = g(η1, ..., ηk , ξ).

Remark. Without loss of generality, we can assume Σ1/2w∗i are

orthonormal and define Q = I −
∑k

i=1 w
∗
i (w∗i )TΣ
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Generalized Linear Objective

Fix a continuous loss f : R× Y → R, define the empirical loss and
population loss as

L̂(w) =
1

n

n∑
i=1

f (〈w , xi 〉, yi ), L(w) = E(x ,y)∼D[f (〈w , x〉, y)]

(C) there exists τ > 0 such that uniformly over all w ∈ Rd

E(x ,y)∼D[f (〈w , x〉, y)4]1/4

E(x ,y)∼D[f (〈w , x〉, y)]
≤ τ

(D) the class of functions on Rk × R defined by

{(x , y)→ 1{f (〈w , x〉, y) > t} : w ∈ Rk , t ∈ R}

has VC dimension at most h.
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Uniform Convergence

Theorem

Under the assumptions (A), (B), (C), (D), let Cδ : Rd → [0,∞] be
any continuous function such that with probability at least 1− δ/4
over x ∼ N (0,Σ), it holds uniformly over all w ∈ Rd that
〈Qw , x〉 ≤ Cδ(w). If f is M-Lipschitz w.r.t. the first argument for
any y ∈ Y, then with probability at least 1− δ, it holds uniformly
over all w ∈ Rd

(1− ε)L(w) ≤ L̂(w) + M
√

Cδ(w)2/n

Alternatively, if
√
f is

√
H/2 Lipschitz, then the following holds

(1− ε)L(w) ≤
(√

L̂(w) +
√
H/2 · Cδ(w)2/n

)2

where ε = Õ(τ
√

h/n).
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Complexity function Cδ
For any norm ‖ · ‖, we have

〈Qw , x〉 = 〈Qw ,QT x〉 ≤ ‖Qw‖ · ‖QT x‖∗

and so we can let
√
Cδ(w)2/n ≈ ‖Qw‖·E‖QT x‖∗√

n
which can be

viewed as the Rademacher complexity Rn. However, this is better
than using Rn because

I we don’t need to fix a hypothesis class first and our
generalization bound can be tightly applied to predictors with
different norms simultaneously

I we can choose to work with either ‖w‖ or ‖Qw‖, and ‖Qw‖
can be significantly smaller if the learned ŵ is concentrated in
a few fixed directions

I the data norm E‖QT x‖∗ can also be significantly smaller (e.g.
spiked covariance settings)

The cost of using Q is paid in ε = Õ(τ
√

h/n) because usually
h = O(k).
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Benign Overfitting

Let’s specialize to the square loss or the squared hinge loss where
H = 2 and fix ‖ · ‖ to be the Euclidean norm. Consider the
minimal `2 norm interpolant for regresion

min
w∈Rd

‖w‖2

s.t. 〈w , xi 〉 = yi , ∀i ∈ [n]

or hard-margin SVM for classification

min
w∈Rd

‖w‖2

s.t. yi 〈w , xi 〉 ≥ 1, ∀i ∈ [n].

In both cases, we have L̂(ŵ) = 0.
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Benign Overfitting (continued)

Then our uniform convergence guarantee implies that

(1− ε)L(ŵ) ≤ ‖ŵ‖
2
2 tr(Σ⊥)

n

where Σ⊥ = QTΣQ. Indeed, if w ] is the Bayes optimal predictor

and we define the effective rank R(Σ) = tr(Σ)2

tr(Σ2)
, then we can show

the norm bound

‖ŵ‖2
2 ≤ ‖w ]‖2

2 +

(
1 + O

(
n

R(Σ⊥)

))
nL∗

tr(Σ⊥)

and so plugging in yields

(1− ε)L(ŵ) ≤ ‖w
]‖2

2 tr(Σ⊥)

n
+

(
1 + O

(
n

R(Σ⊥)

))
L∗
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Benign Overfitting (continued)

Finally, we see that L(ŵ)→ L∗ in probability if the benign
overfitting condition holds

k

n
→ 0,

‖w ]‖2
2 tr(Σ⊥)

n
,

n

R(Σ⊥)
→ 0

This set of conditions is known to be sufficient and (almost)
necessary. In fact, using the full optimistic rate result, we can show
that any ridge or soft-margin SVM solution with training error
smaller than L̂(w ]) is consistent.
Moreover, this result allows the distribution D to be misspecified
by a linear model.
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Experiments
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Extensions

I High probability version of precise asymptotics in proportional
scaling regime

I LASSO and minimal-`p norm interpolant
I application to non-convex learning problems

phase retrieval: f (〈ŵ , x〉, y) = (|〈ŵ , x〉| − y)2

ReLU regression: f (〈ŵ , x〉, y) = (σ(〈ŵ , x〉)− y)2 where
σ(ŷ) = max(0, ŷ).
any other 1-Lipschitz activation function (e.g. Sigmoid, tanh)
classification loss f (〈ŵ , x〉, y) = (1− σ(〈ŵ , x〉)y)2

+

I two-layer neural network with N hidden units

weights are shared in the bottom layer, but each hidden unit is
allowed to have a separate bias term
predictors of the form h(x) =

∑N
i=1 aiσ(〈w , xi 〉 − bi )

I Moreau envelope theory
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