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● Interpolation Learning: achieving low population error while training 

error is exactly zero in a noisy, non-realizable setting



Low norm interpolation learning

● Implicit regularization in linear regression

○ Square loss objective

○ When initialized at the origin, gradient descent finds minimal norm 

interpolator

● Benign overfitting in linear regression [Bartlett et al, 2019]
○ very nice results that tightly characterize the excess risk of  
○ but its analysis does not leverage the minimal norm aspect of it 
○ is low norm really the key to good generalization?



Uniform convergence

● Pick a collection of hypotheses from which the learning rule outputs with high 
probability, and then show that the maximal generalization gap over this 
hypothesis class is small with high probability



Why uniform convergence?

● If uniform convergence (or some version of it) works

○ combined with implicit regularization can be a unified and principled 

method to study more complex overparameterized model

○ Is a naïve application enough? If not, what kind of modification is 

necessary?

○ the phenomenon of interpolation learning is “robust” - has practical 

implications

○ the techniques from a uniform-convergence type analysis may generalize to 

other interpolators



Why uniform convergence?

● If there is no way to make uniform convergence work even in this simple setting

○ Maybe it’s time to wholly abandon uniform convergence 

○ Bad news for implicit regularization

■ Why try to find an implicit regularizer if the analysis has to depend 

crucially on the specific algebraic structure?



Challenge: getting the tight constant!

● In low dimensional settings, the generalization gap vanishes and the training error 

converges to Bayes risk 

● OK to have a constant factor in the upper bound of generalization gap

● In high dimensional interpolation settings, the first term is zero so the generalization 

gap needs to converge exactly to the Bayes risk!



Negative results - I

● Uniform convergence may be unable to explain generalization in deep learning 

[Nagarajan and Kolter, 2019]

○ If we can identify a hypothesis class      from which the learning rule outputs 

with high probability, and the generalization gap over      is small with high 

probability, then there exists a collection of training sets       and if we 

consider only the outputs of learning rule                              , it holds that the 

uniform generalization gap                                                   is small 



Negative results - I

● Uniform convergence may be unable to explain generalization in deep learning 

[Nagarajan and Kolter, 2019]

○ Failure of algorithm-dependent uniform convergence

■ Any collection of typical training sets       has large uniform 

generalization gap, but the actual predictor found by gradient descent 

has small generalization gap (the quantity                            is small)  

■ the empirical risk does not have to be evaluated on the training set 

that the algorithm uses to learn:   

○ limitation

■ bound has to consider two sided difference



Negative results - II

● In defense of uniform convergence: generalization via derandomization with an 

application to interpolating predictors [Negrea, Dziugaite and Roy, 2020]

○ For any sequence of        , as sample size tends to infinity, the expectation of 

the uniform generalization gap over the outputs of learning rule          is at 

least 1.5 * the Bayes risk

○ two-sided uniform convergence is not sufficient to explain consistency of 

interpolation and  standard symmetrization techniques cannot be directly 

applied to interpolation learning



Negative results - III

● Failures of model-dependent generalization bounds for least-norm interpolation 

[Bartlett and Long, 2021]

○ the excess risk of the learned minimal norm interpolator

○ any bound                                        that                 

■ only depend on the learned hypothesis, sample size and confidence

■ satisfies certain anti-monotonicity condition in n

■ holds uniformly for all unit scale sub-gaussian distribution with high 

probability

then there is a sequence of distribution on which the minimal norm 
interpolator is consistent, but for most n, the bound is bounded away from 
zero with constant probability



Negative results - III

● Failures of model-dependent generalization bounds for least-norm interpolation 

[Bartlett and Long, 2021]

○ allow distribution dependence only through the learned predictor; the only 

property that we know about the population is unit sub-Gaussianity, so it 

cannot capture bounds that adapt to

■ noise levels in the problem

■ the empirical risk of the learned predictor  



Our setting

● Minimal norm interpolator is consistent [Bartlett et al, 2019] 

● The prediction of minimal norm interpolator on new samples is asymptotically 

equivalent to ridge regression using only the signal part

○ New “junk” is asymptotically almost sure orthogonal to the old “junk” 

○ Signal part converge to ridge regression estimate



Our setting

● The prediction of minimal norm interpolator on new samples is asymptotically 

equivalent to ridge regression using only the signal part

○ as long as the bias introduced by regularization is negligible, ridge 

regression estimate is consistent

○ interchanging limit and expectation yields consistency



Our negative results

● could we have discovered consistency via uniform convergence?

○ Rademacher bounds assume Lipschitz loss, which does not hold for square 

loss on unbounded domain

● NO!

○ generalization gap over even the smallest norm ball that contains the 

minimal norm interpolator diverges:



Proof sketch

● decompose generalization gap as

● from above, obtain the lower bound



Beyond norm balls and minimal 2-norm interpolator

● there is no fixed hypothesis class that we can choose to prove 
consistency & holds for all natural interpolator



Proof sketch

● For each                            
○ consider                                    and    

○ when there is no signal part, have                                          

○ The general case can be handled by an orthogonal projection

so we have



Lessons from these negative results

● In order to get consistency, we need to consider

○ one sided uniform convergence, or

○ some “localized” version of uniform convergence that doesn’t pay attention 

to cases with high empirical risk

● this phenomenon seem to extend beyond linear regression and the minimal 

norm interpolator

● Small norm is not sufficient for generalization generally 

○ but is it sufficient in the context of interpolation? 

○ uniform convergence of zero-error predictor



Uniform convergence of zero-error predictor

● Is this uniform convergence?



Visualization of “interpolating” hypothesis class



How to analyze this generalization gap?

●      is any interpolator, i.e. Xw = Y
the columns of F form an orthonormal basis for ker(X)

● expanding the quadratic term, we can decompose 
○ generation gap = risk of surrogate interpolator + gap to worst interpolator

● the gap is formulated as a Quadratically Constrained Quadratic Program (QCQP)
○ can be analyzed easily by its dual
○ strong duality holds for QCQP with single constraint without convexity 

assumption

● By a change of variable, the generalization gap equals



Some definitions

● Restricted eigenvalue under interpolation

● Minimal risk interpolator 
○ best interpolator possible, but cannot be computed in practice
○ useful for theoretical analysis to show lower bound & upper bound



Two general results 

● Strategy: decompose generation gap as risk of a surrogate interpolator + gap to 
worst interpolator

■ with minimal risk interpolator

■ with minimal norm interpolator



In our case...

● norm calculation 

● restricted eigenvalue

● Consistency of minimal risk interpolator



Plugging in...

● can conclude



Plugging in...

● can conclude



Some observations...

● Rademacher complexity

● Speculative bound



Optimistic rate

● Risk dependent bound for smooth loss

● Issue: hidden factor on               of
● If we can get c = 1, it would imply speculative bound and can quantify how 

much population risk degrade if we don’t optimize to exact zero error



Summary

● Uniformly bounding the difference between empirical and population errors 

cannot show any learning in the norm ball

● Uniform convergence over any set, even one depending on the exact algorithm 

and distribution, cannot show consistency

● but we show that an “interpolating” uniform convergence bound does

○ show low norm is sufficient for interpolation learning in our testbed 

problem; near minimal norm interpolator can also achieve consistency!

○ predict exact worst-case error as norm grows

● when applying uniform convergence in the context of interpolation learning, 

need to consider optimistic-rate, or risk dependent type of bound


