
Agnostic Interpolation Learning Beyond
Linear Regression

Lijia Zhou

Department of Statistics, University of Chicago

Joint work with Frederic Koehler (Stanford), Danica Sutherland (UBC),
Pragya Sur (Harvard), Zhen Dai (UChicago), Jamie Simon (UC Berkeley),

Gal Vardi (TTIC/Hebrew University), Nati Srebro (TTIC)

May 23, 2023



Introduction

Interpolation Learning: it is possible for a high-dimensional model
to interpolate noisy training labels, while generalizing well to
unseen test data.

▶ Many prior works focus on the setting of linear regression with
a well-specified model:

y = ⟨w∗, x⟩+ ξ

where ξ is independent of x and E[ξ] = 0,E [ξ2] = σ2.

▶ It is shown that the minimal ℓ2 norm interpolant is consistent,
i.e. test error converges in probability to the Bayes error σ2,
under some conditions on the covariance matrix Σ (e.g.,
Bartlett et al. 2020).
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This talk...

▶ Beyond Linear Regression

uniform convergence
applications: max-margin classification, phase retrieval, ReLU
regression, low-rank matrix sensing

▶ Agnostic Learning:

can the minimal norm interpolant achieve the best error
attainable by any linear predictor?
can the minimal norm interpolant achieve the best error
attainable by any regularized estimator?
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Generalized Linear Model (GLM)

We receive i.i.d. sample pairs (xi , yi ) from some data distribution
D over Rd × Y.

Fix any loss function f : R× Y → R, we can fit a linear model ŵ
by minimizing the empirical loss L̂f :

L̂f (w) =
1

n

n∑
i=1

f (⟨w , xi ⟩, yi ),

with the goal of achieving small population loss Lf :

Lf (w) = E(x ,y)∼D[f (⟨w , x⟩, y)].
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Uniform Convergence (the old approach)

Decompose the test error

Lf (w) ≤ L̂f (w)︸ ︷︷ ︸
training error

+ sup
w∈K

|Lf (w)− L̂f (w)|︸ ︷︷ ︸
Generalization gap

If f is M-Lipschitz: for any y ∈ Y and ŷ1, ŷ2 ∈ R

|f (ŷ1, y)− f (ŷ2, y)| ≤ M|ŷ1 − ŷ2|,

then we can bound the generalization gap by the Rademacher
complexity Rn:

sup
w∈K

|Lf (w)− L̂f (w)| ≤ 2 ·MRn
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Uniform Convergence (the new approach)

If
√
f is

√
H-Lipschitz (e.g., the square loss), then we can show

sup
w∈K

∣∣∣∣√Lf (w)−
√
L̂f (w)

∣∣∣∣ ≤√HR2
n.

Specializing to interpolants L̂f (ŵ) = 0, we obtain√
Lf (ŵ) ≤

√
L̂f (ŵ) +

√
HR2

n =⇒ Lf (ŵ) ≤ HR2
n.

For the class of norm constrained linear predictors
K = {w ∈ Rd : ∥w∥ ≤ B} with an arbitrary norm ∥ · ∥, we have

Rn ≤ B · E∥x∥∗√
n
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Disclaimer!

For technical reasons, we need to assume that x is Gaussian, but
x can have arbitrary mean and covariance. We also assume the
condition distribution of y depends on x through W T x for some
W ∈ Rd×k where k = o(n). For example,

1. Y = R and y = ⟨w∗, x⟩+ ξ

2. Y = R and

y = ⟨w∗, x⟩︸ ︷︷ ︸
linear signal

+ |x1| · cos x2︸ ︷︷ ︸
non-linear term

+ x3 · ξ︸ ︷︷ ︸
heteroscedasticity

3. Y = {−1, 1} and

Pr (y = 1) = sigmoid(⟨w∗, x⟩)
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Application 1: Linear Regression
To upper bound

min
w∈Rd :

∀i∈[n],⟨w ,xi ⟩=yi

∥w∥2

we consider w = w ♯ + w⊥, where w ♯ is the linear predictor with
the least population error and

w⊥ = argmin
w∈Rd :

∀i∈[n],⟨w ,xi ⟩=yi−⟨w♯,xi ⟩

∥w∥2

The intuition behind the norm calculation is that if the effective
ranks (Bartlett et al. 2020) are high, then xi are approximately
orthogonal and we can choose

w⊥ ≈
n∑

i=1

[
y − ⟨w ♯, xi ⟩

∥xi∥2

]
xi
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Application 1: Linear Regression

and so the norm is

∥w⊥∥22 ≤ (1 + o(1))
n · E[(y − ⟨w ♯, x⟩)2]

E∥x∥22
,

and plugging into the bound Lf (ŵ) ≤ ∥ŵ∥22E∥x∥22
n , given that the

norm of w ♯ is not too large, we show that

Lf (ŵ) ≤ (1 + o(1))E[(y − ⟨w ♯, x⟩)2].

This calculation

▶ makes almost no assumption on the form of y

▶ allows us to replace w ♯ with any other linear predictor

▶ can provide finite-sample convergence rate
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Application 2: Max-margin Classification

To upper bound
min
w∈Rd :

∀i∈[n],⟨w ,xi ⟩yi≥1

∥w∥2

we also consider w = w ♯ + w⊥ where

w⊥ = argmin
w∈Rd :

∀i∈[n],⟨w ,xi ⟩=yi (1−yi ⟨w♯,xi ⟩)+

∥w∥2

then the same argument shows

∥w⊥∥22 ≤ (1 + o(1))
n · E[(1− y⟨w ♯, x⟩)2+]

E∥x∥22
,

and so the max-margin solution is consistent with respect to the
squared hinge loss f (ŷ , y) = (1− ŷ y)2+, which is 1 square-root
Lipschitz!
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Application 3: Phase Retrieval

To upper bound
min
w∈Rd :

∀i∈[n],⟨w ,xi ⟩2=y2
i

∥w∥2

we also consider w = w ♯ + w⊥. Let I = {i ∈ [n] : ⟨w ♯, xi ⟩ ≥ 0},
then we should let

w⊥ = argmin
w∈Rd :

∀i∈I ,⟨w ,xi ⟩=yi−|⟨w♯,xi ⟩|
∀i /∈I ,⟨w ,xi ⟩=|⟨w♯,xi ⟩|−yi

∥w∥2.

and so the minimal norm solution in phase retrieval is consistent
with respect to f (ŷ , y) = (|ŷ | − y)2, which is also 1 square-root
Lipschitz!
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Application 4: ReLU Regression
Let σ(ŷ) := max{ŷ , 0} be the ReLU activation. To upper bound

min
w∈Rd :

∀i∈[n],σ(⟨w ,xi ⟩)=yi

∥w∥2

we also consider w = w ♯ + w⊥. This time, we let
I = {i ∈ [n] : yi > 0} and we pick

w⊥ = argmin
w∈Rd :

∀i∈I ,⟨w ,xi ⟩=yi−⟨w♯,xi ⟩
∀i /∈I ,⟨w ,xi ⟩=−σ(⟨w♯,xi ⟩)

∥w∥2

and the consistent loss in this case is

f (ŷ , y) =

{
(ŷ − y)2 if y > 0

σ(ŷ)2 if y = 0

which is again 1 square-root Lipschitz!

Lijia Zhou Agnostic Interpolation Learning Beyond Linear Regression 12



The General Strategy

To compute the minimal norm required to interpolate:

▶ consider predictors of the form w = w ♯ + w⊥

▶ fix any w ♯, figure out the constraints on ⟨w⊥, xi ⟩
▶ square the constraints to find the correct loss f to use

▶ chances are f is square-root Lipschitz

Apply the uniform convergence guarantee with square-root
Lipschitz loss, and we are done!
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Application 5: Low-rank Matrix Sensing
Consider the minimal nuclear norm solution:

X̂ = argmin
X∈Rd1×d2 :

∀i∈[n],⟨Ai ,X ⟩=yi

∥X∥∗

Assume that the entries of Ai are i.i.d. standard Gaussian and
yi = ⟨Ai ,X

∗⟩+ ξ with ξ ∼ N (0, σ2) and X ∗ has rank r . Then we
can compute the minimal norm to show

∥X̂ − X ∗∥2F
∥X ∗∥2F

≲
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X ∗∥F

+

(√
d1
d2

+
n

d1d2

)
σ2

∥X ∗∥2F
.

In particular, overfitting is benign if (i) r(d1 + d2) = o(n), (ii)
d1d2 = ω(n), and (iii) d1/d2 → {0,∞}. This can happen for
example when r = Θ(1), d1 = Θ(n1/2), d2 = Θ(n2/3).
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Cost of Overfitting in KRR
We consider kernel ridge regression:

f̂δ = argmin
f ∈H

R̂(f ) +
δ

n
∥f ∥2H.

Given any data distribution D over X × R and sample size n ∈ N,
we define the cost of overfitting as:

C (D, n) :=
R(f̂0)

infδ≥0 R(f̂δ)
.
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Spectrum of the Kernel

Given the marginal distribution of x , we can find the Mercer’s
decomposition:

K (x , x ′) =
∑
i

λiϕi (x)ϕ(x
′)

where Ex [ϕi (x)ϕj(x)] = δij . The effective ranks of a sequence of
eigenvalues {λi}∞i=1 in descending order are defined as

rk =

∑
i>k λi

λk+1
and Rk :=

(∑
i>k λi

)2∑
i>k λ

2
i

.

Lijia Zhou Agnostic Interpolation Learning Beyond Linear Regression 16



Tightest Bound on C (D, n)

Using the non-rigorous result from Simon et al. 2021, we show
that there is a quantity E0, which only depends on n and the
spectrum of the kernel {λi}, such that

C (D, n) ≤ E0.

Moreover, for all marginal distribution of x and sample size n,
there exists P(y |x) such that C (D, n) = E0. In well-specified
settings, C (D, n)/E0 → 1.
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Benign Overfitting

For any n ∈ N, let kn be the first integer k < n such that
n ≤ k + rk . If no such kn exists, we simplify let kn = n. Then
E0 → 1 if and only if

lim
n→∞

kn
n

= 0 and lim
n→∞

n

Rkn

= 0.

The above result is agnostic to the distribution of y and allows the
spectrum to change with n. An agnostic view on interpolation
learning:

▶ as long as the benign overfitting conditions hold, no matter
how hard it is to learn the target, the interpolating ridgeless
solution is as asymptotically good as the optimally balanced
predictor
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Benign, Tempered, or Catastrophic

Suppose that the spectrum {λi} is fixed as n increases and
contains infinitely many non-zero eigenvalues.

▶ If limk→∞ k/rk = 0, then overfitting is benign:
limn→∞ E0 = 1.

▶ If limk→∞ k/rk ∈ (0,∞), then overfitting is tempered:
limn→∞ E0 ∈ (1,∞).

▶ If limk→∞ k/rk = ∞, then overfitting is catastrophic:
limn→∞ E0 = ∞.

Moreover, when overfitting is tempered, the cost of overfitting can
be bounded by

E0 ≲ 1 +
k

rk
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Future Directions

▶ Rigorous version of the cost of overfitting

beyond the setting of ridge regression

▶ Gaussian universality

we have a simple counterexample (motivated by Shamir 2022)
for linear regression where we can prove that we only have
uniform convergence for the weighted square loss
not only uniform convergence fails, the consistency result with
respect to the square loss also fails

▶ Extension to neural networks
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