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Motivation

» modern ML models are becoming incredibly larger!

» 7-billion-parameter model is small??7?

RESEARCH

Introducing LLaMA: A foundational, 65-
billion-parameter large language model

As part of Meta's commitment to open science, today we are publicly releasing LLaMA (Large Language
Model Meta Al), a state-of-the-art foundational large language model designed to help researchers advance
their work in this subfield of Al. Smaller, more performant models such as LLaMA enable others in the
research community who don’t have access to large amounts of infrastructure to study these models, further
democratizing access in this important, fast-changing field.

Training smaller foundation models like LLaMA is desirable in the large language model space because it
requires far less computing power and resources to test new approaches, validate others’ work, and explore
new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-
tuning for a variety of tasks. We are making LLaMA available at several sizes (7B, 13B, 33B, and 658
parameters) and also sharing a LLaMA model card that details how we built the model in keeping with our
approach to Responsible Al practices.
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Motivation

» number of parameters in GPT
m 2018: 117 Million, 2019: 1.5 Billion, 2020: 175 Billion

m GPT-4 >> 200 Billions

» vision transformers

BLOG

Scaling vision transformers to 22 billion parameters

FRIDAY, MARCH 31, 2023
Posted by Piotr Padlewski and Josip Djolonga, Software Engineers, Google Research

Large Language Models (LLMs) like PaLM or GPT-3 showed that scaling transformers to hundreds of billions of
parameters improves performance and unlocks emergent abilities. The biggest dense models for image
understanding, however, have reached only 4 billion parameters, despite research indicating that promising multimodal
models like PaLl continue to benefit from scaling vision models alongside their language counterparts. Motivated by
this, and the results from scaling LLMs, we decided to undertake the next step in the journey of sealing the Vision
Transformer.
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Bigger = Better!

» 2-layer NNs with an increasing number of hidden units
[Neyshabur et al. 2015]:
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Interpolation learning

P it is possible for a model to generalize well while interpolating
noisy training labels [Belkin et al. 2018]
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A Challenge for Statistical Learning Theory

» Occam’s razor: simpler models generalize better!

» uniform convergence: training error is close to the test error
for all low-complexity models

> However, models that interpolate noisy training labels often

have very high complexity (even in terms of dimension-free
measures such as ¢ norm)
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A Challenge for Statistical Learning Theory

» Why do high-dimensional interpolants generalize?
» How can we analyze models with high complexity?
m uniform convergence!
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Plan

> Setting
> Moreau envelope generalization theory
» Applications
m linear regression
max-margin classification
phase retrieval, relu regression
matrix sensing
(single-index) neural networks

» Universality
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Setting

We receive i.i.d. sample pairs (x;, y;) from some data distribution
D over RY x V.

Fix any continuous loss function f : R x J — R, we can fit a linear

model (W, B) by minimizing the empirical loss Ly :

(Wb Zf (w, x;) + b, yi),

i=1

with the goal of achieving small population loss L¢:

Lf(W7 b) = E(x,y)N’D[f(<W7X> + bvy)]
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Goal

We want to prove high probability bounds on L¢(w, B) with weak
assumptions on D. For example,

Le(Ww, b) < inf L¢(w, b) + e (0.1)

» confidence interval for prediction error

» understand what properties of the optimization algorithm
and data distribution can allow us to learn in
high-dimensional settings?

» theoretical tools to predict generalization behaviors and guide
the design of better algorithms and model selection
procedures in practice
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Implicit Bias of GD

If d > n and we run gradient descent on L¢(w, b), then

frbe—  argmin w3+ b2 (0:2)
w,b:L¢(w,b)=0

Proof: W; stays in the {w = XTv|v € R"} and so the limit
satisfies the KKT condition.

Examples:
1. Linear regression
2. Logistic regression: converge in direction to the max-margin
solution

3. Matrix Factorization: if X = UUT and we run GD on U, then
X: converge to the minimal nuclear norm solution
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Examples

» minimal £ norm interpolant:
argmin  [|w||2
st. Vien], (w,x)+ b=y,
» max-margin classification:
argmin ||wl2
st. Vie(n], (w,x;))+ b)y; >1
» phase retrieval:
argmin  [|w||2
st. Vie[n], (w,x)?=y?
» RelU regression:
argmin  wll
st. Vie(n], c({w,x)) =y

(3.5)

(3.6)
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Examples

We also consider the problem of matrix sensing:

argmin [ X« (3.7)
st. Vie[n], (A, X) =y '

These estimators satisfy [+ =0 with
> (9, y) =1 -9y
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Gaussian Multi-Index Model

The distribution D over R x ) is given by
(A) x ~N(p,X),
(B) there exist w;,...,w; € RY, a random variable £ ~ D;

independent of x (not necessarily Gaussian), and an unknown
link function g : R“*1 — Y such that

ni=(wi,x), y=gm, ., nE). (0.8)
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Examples

1. Y=Rand y = (w*, x) + ¢
2. Y=Rand

y= (W, x) + |x1|-cosxy + x3 - &
~—— S — ——

linear signal  non-linear term  heteroscedasticity
3. Y={-1,1} and
Pr(y = 1) = sigmoid({w™, x))

4. g is a neural network with k hidden units in the first layer
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Model Complexity

Let W = [wf,..,w;] e R and Q=1 - W(WTEZW)1WTx.

x = QT x is the components of x that is independent of y
> Q2= Q: Qis a projection
> QTIW =0: Q"x and WTx are independent
» y only depends on x through W Tx

Let Cs be a continuous function such that with probability at least
1—6/4 over x* ~ N (0, ZJ—), uniformly over all w € RY,

(w,xT) < Cs(w). (4.9)
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Moreau Envelope Generalization Theory

Moreau envelope of f with parameter A > 0 is defined as
f(.y) = inf F(u,y) + Mu - 9)°

and is usually viewed as a smooth approximation to the original
function f.

Under some mild conditions on f, there exists e = O(y/k/n) such
that w.p. at least 1 — 6, for allw € RY, b€ R and A > 0

Le (w,b) < (1+¢) <£f(w, b) + W) . (4.10)
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Properties of the Moreau Envelope

» if for each y € Y, f is M-Lipschitz with respect to the first
argument, then for any A >0

M2
h@:y) 2 F(0.y) = 5 (4.11)

> if f is non-negative and for each y € J, V/f is v/ H-Lipschitz
with respect to the first argument, then for any A > 0

A
(0. v) > ——F(D.v). 412
(7, y) > T H (7,y) (4.12)

P for the square loss, squared hinge loss, phase retrieval loss,
and the RelLU loss, it holds that for any A > 0

B y)=—=f(0,y) (4.13)
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Lipschitz loss

Combining (4.10) with (4.11)
ACs(w)?  M?
T

Le(w,b) < (1+¢) ([f‘(W, b) —i-)l\gfo
C(;(W)2> (4.14)

=(1+¢) <[f(w, b) + M ;.

Examples:
» Absolute loss, Logistic loss / Binomial GLM, Hinge loss

» Huber's loss, modified Huber's loss
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Square-root Lipschitz loss

Combining (4.10) with (4.12)

w)2
Le(w,b) < (1 ()</{r;%)\+HLf( b)+()‘+H)C())

)

For any 1-Lipschitz 0 : R — R (e.g., identity, absolute value,
ReLU, sigmoid, tanh), the following loss functions are 1
square-root Lipschitz:

> f(9,y) =(o(9) —y)?
> f(9,y) =1 —-0a(@)y)

(4.15)

Lijia Zhou A Statistical Learning Theory for Models with High Complexity

20



¢, Benign Overfitting for Linear regression, Max-Margin
Classification, ReLU regression and Phase Retrieval

By Cauchy-Schwarz, we have

(w,xT) < [[wlallx*ll2 = [[wll2y/tr(Z4)

and so uniformly over all (w, b) € R9+!

2
Le(w.b) < (110 (x/if(w, b) + w2y tr(f”)
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Norm bound

The effective rank of a covariance matrix ¥ is defined as

_tr(X)?

(%)= tr(X2)

Fix any (w#, b*) € RI*L. There exists

k log(n/k) 1 1 1 n
() ()

such that with probability at least 1 — ¢, it holds that

. nL¢(wt, bt
min Il < (Wl (1 + o)y L5

. (4.16
(w,b)ERIH1:[ ¢ (w,b)=0 tr(Zl) ( )

v
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Generalization Bound

Let W, b = arg My, b).7 s (w,b)=0 |lw||2 be the minimal norm
interpolant. With probability at least 1 — 6, it holds that

Lf(W, B) < (1 + /)) ( L,C(Wti bﬁ) + H jj|| \/ ) 4 17

We establish consistency when

g tr(Zh) k n 41
lw?]|2 — — 0, n—>0, R(Zl)_m (4.18)
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Examples:

» Junk feature:

(I O 1
z_<0 M) — Tl

» Gaussian kernels on the hypersphere: by rotation invariance,
> has a block diagonal structure and the j-th block has
dimension O4(d")

m Consider the scaling n = d' where | ¢ N, then we can take
k = O(d") = o(n). Moreover, it holds that
R(TH) = Q(d") = w(n)
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Minimal Nuclear Norm in Matrix Sensing

Given (i.i.d. standard Gaussian) random measurement matrices

A1, ..., Ap and measurements y1, ..., y, given by y; = (A;, X*) +&;
where £ is independent of A;, and E¢ = 0 and E£2 = o2, we hope
to reconstruct the matrix X* € R4*% with sample size n < dids.

We assume X* has rank r and we consider the minimal nuclear

norm solution
X = arg min [ X ]|« (4.19)
XERMX%:(A; X)=y;

The dual norm of nuclear norm is the spectral norm and so

IXIZCE(A])?

o? + || X = X*||E = L(X) < (1 + o(1)) -
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Nuclear norm bound

Similar analysis shows that
-1/2
o n E[lAll+
Xl < |IX*||«+ (11— no
%1 <X+ (1= ) g
and so
IX = X*|F + 0

§ﬂ+dm<

X [E[Al n \ V2 EJALEA]
+(1

- dido

Vn E Al

Lijia Zhou
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Low-Rank Matrix Recovery
Importantly, since X* has rank r, we have || X*|. < /|| X*||£.

Moreover, it is well-known that E||A|| ~ v/d1 + /d>. Rearranging
the uniform convergence bound, we obtain

< <1_ n >_1 <E|A|*EHAH>
— 2 *|2
did> E[[Al HXH
r(di + d2) ﬁ+®
+ 0
( Y |X*||F>

In the noiseless case o = 0, we recover the classical rate

IX = X*IIz
X+

IX — X"z
IX*I1%

r(d1 + d2)
n

E

~
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Benign Matrix Sensing

The singular values of A concentrates to the square root of the

Marchenko-Pastur law if di/d> converge to a constant. However,
EA[-E[ Al
_ E[|lAlIz _ _ _
singular values are all the same. This happens if and only if

* (12
di/d> — {0,00}. Therefore, when the signal to noise ratio %

is constant, we obtain consistency when the following holds
» r(di+ d2) = o(n)
» did, = w(n)
» di/dr — {0,000}

by Holder's inequality, can only converge to 1 when the

This can happen for example when

r=0(1),d = O(n*/?),dy = O(n*/3).
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Local Gaussian width

We define a mapping ¢ : RY — RKF1 by
¢(w) = (W ZW, ||w|51). (4.20)

It is obvious that for w €

(w,xt) < max (W', x")
w ERC:p(w!)=d(w)
(4.21)
~E max (W', x| == C(p(w))

w!ER:p(w')=¢(w)
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Optimal Complexity Control

Suppose that f is convex. If w, b is the constrained ERM for any
bounded convex set, then it holds that

PP ooy AC(o(W))?
Le(w, b) ~ max L, (W, b) — —
In particular, if £, = 1+/\' then

and so
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Single-Index Neural Network

Let o(x) = max(x, 0) be the ReLU activation function, N be the
number of hidden units, and 6 = (w, a, b) € R9+2N parameterize
the class of simple neural nets:

N

ho(x) :== Za,-a((w,x> — by).

i=1

If we use the square loss or the squared hinge loss, we are
essentially minimizing

N 2 N
f(9,y,0) = (Z aio(y — b)) — y> or (1 - Za,-a(y — b,-)y)

2

+

and \/f is max;c[n] ’ZJ,::1 a;| Lipschitz if we sort the b;'s.
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Generalization Bound

The square-root Lipschitz parameter depends on the model 6, but

we can still show that for some € = O (#) it holds that

Wl Ellx* |l

. J )
max;ec[n] ‘Zizl aj

Vn

L(A) < (1+¢) L(0) +

For linear models, we measure the complexity by the norm of the
coefficients. For (single-index) neural net, we can measure by

J

>

i=1

max [[wl]-

JE[N]
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Universality

» omniscient risk estimator: x; = Zl/zz,- where
m z hasi.i.d. coordinates with zero mean, unit variance, and
bounded 12th moments, as in Wu and Xu (2020)
m z; has independent coordinates with zero mean, unit variance,
finite moments of all order, as in Hastie et al (2020)

» universality of Gaussian Minimax Theorem
m can be proven in similar settings using Lindeberg's method, as
in Han and Shen (2022)
» Gaussian equivalence

m random features: x; = o(Wz;) where W is a randomly
initialized matrix and z; is standard Gaussian, as in Hu and Lu
(2022)

m kernel regression with K(x,x’) = h({x, x’)) on uniform
distribution and x is uniform on hypersphere or boolean
hypercube, as in Misiakiewicz (2022)
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Experiments: Regression

Junk feature (mis-specified) + Ridge, n=300, d=3000

i
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Experiments: Classification

Junk feature + 12 max-margin, n=100, d=2000
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Failure of Universality

Suppose that D is given by
(A) x = (Xjk; Xjd—k) where x, ~ N(0,X|) and there exists a
function h : R¥ — R such that

X\d*k = h(X|k) 4 (022)

where z ~ N (0, Z|d,k) is independent of x.
(B) there exists a function g : R“*1 — R such that

y = 8&8(Xk§) (0.23)

where  ~ D¢ is independent of x.
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Failure of Universality

It can be shown that

[CIER:TEYRT SR [(y— <w,x>>2]
inf Elh(x)?]-E | (T 5

n h(x‘k)

However, if we choose ¥ |4_, to be benign, then the Gaussian

theory would predict
2
iDVfE[(<WaX> —y)] < i‘r}/f ]E[h(x‘k)z] E (}/—I7(§<||/Z,)><>) ]
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Counterexample

Consider k =1, x; ~ N(0,1), h(|x1]) = 1 + |x1| and y = h(|x1])?.

Then it holds that
(y - <w,x>>2
h(x(x)

In this case, we cannot pretend that x is Gaussian because

inf E[((w. x) — )] — inf E[A(x)?] - E

= var(h(|x1])) > 0.

» the complexity function Cs is defined like a worst-case
Rademacher complexity

» for Gaussian data it's not that different from the expected
Rademacher complexity because the norm of the tail of x
concentrates

» the tail of x does not concentrate in this counterexample!
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Summary

We propose a statistical learning theory for models with high
complexity. We use it to explains benign overfitting in:

» linear regression (or kernel regression),
> max-margin classification,

» phase retrieval, ReLU regression,

P> matrix sensing.

This theory is non-asymptotic, requires very mild assumptions, can
be easily adapted to different complexity measure (¢1, {2, nuclear
norm, etc) and has the potential to explain even more complex
models such as deep neural nets.

However, this theory requires a Gaussian feature assumption and
universality can fail in unexpected ways.
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