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Motivation

▶ modern ML models are becoming incredibly larger!

▶ 7-billion-parameter model is small???
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Motivation

▶ number of parameters in GPT

2018: 117 Million, 2019: 1.5 Billion, 2020: 175 Billion
GPT-4 >> 200 Billions

▶ vision transformers
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Bigger = Better!

▶ 2-layer NNs with an increasing number of hidden units
[Neyshabur et al. 2015]:
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Interpolation learning

▶ it is possible for a model to generalize well while interpolating
noisy training labels [Belkin et al. 2018]
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A Challenge for Statistical Learning Theory

▶ Occam’s razor: simpler models generalize better!

▶ uniform convergence: training error is close to the test error
for all low-complexity models

▶ However, models that interpolate noisy training labels often
have very high complexity (even in terms of dimension-free
measures such as ℓ2 norm)
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A Challenge for Statistical Learning Theory

▶ Why do high-dimensional interpolants generalize?
▶ How can we analyze models with high complexity?

uniform convergence!
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Plan

▶ Setting

▶ Moreau envelope generalization theory
▶ Applications

linear regression
max-margin classification
phase retrieval, relu regression
matrix sensing
(single-index) neural networks

▶ Universality
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Setting

We receive i.i.d. sample pairs (xi , yi ) from some data distribution
D over Rd × Y.

Fix any continuous loss function f : R×Y → R, we can fit a linear
model (ŵ , b̂) by minimizing the empirical loss L̂f :

L̂f (w , b) =
1

n

n∑
i=1

f (⟨w , xi ⟩+ b, yi ),

with the goal of achieving small population loss Lf :

Lf (w , b) = E(x ,y)∼D[f (⟨w , x⟩+ b, y)]
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Goal

We want to prove high probability bounds on Lf (ŵ , b̂) with weak
assumptions on D. For example,

Lf (ŵ , b̂) ≤ inf
w ,b

Lf (w , b) + ϵD,n (0.1)

▶ confidence interval for prediction error

▶ understand what properties of the optimization algorithm
and data distribution can allow us to learn in
high-dimensional settings?

▶ theoretical tools to predict generalization behaviors and guide
the design of better algorithms and model selection
procedures in practice

Lijia Zhou A Statistical Learning Theory for Models with High Complexity 10



Implicit Bias of GD

If d > n and we run gradient descent on L̂f (w , b), then

ŵt , b̂t → argmin
w ,b:L̂f (w ,b)=0

∥w∥22 + ∥b∥22 (0.2)

Proof: ŵt stays in the {w = XT v | v ∈ Rn} and so the limit
satisfies the KKT condition.

Examples:

1. Linear regression

2. Logistic regression: converge in direction to the max-margin
solution

3. Matrix Factorization: if X = UUT and we run GD on U, then
X̂t converge to the minimal nuclear norm solution
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Examples
▶ minimal ℓ2 norm interpolant:

argmin ∥w∥2
s.t. ∀i ∈ [n], ⟨w , xi ⟩+ b = yi

(3.3)

▶ max-margin classification:

argmin ∥w∥2
s.t. ∀i ∈ [n], (⟨w , xi ⟩+ b)yi ≥ 1

(3.4)

▶ phase retrieval:

argmin ∥w∥2
s.t. ∀i ∈ [n], ⟨w , xi ⟩2 = y2i

(3.5)

▶ ReLU regression:

argmin ∥w∥2
s.t. ∀i ∈ [n], σ(⟨w , xi ⟩) = yi

(3.6)
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Examples

We also consider the problem of matrix sensing:

argmin ∥X∥∗
s.t. ∀i ∈ [n], ⟨Ai ,X ⟩ = yi

(3.7)

These estimators satisfy L̂f = 0 with

▶ f (ŷ , y) = (ŷ − y)2

▶ f (ŷ , y) = (1− ŷ y)2+
▶ f (ŷ , y) = (|ŷ | − y)2.

▶ f (ŷ , y) =

{
(ŷ − y)2 if y > 0

σ(ŷ)2 if y = 0
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Gaussian Multi-Index Model

The distribution D over Rd × Y is given by

(A) x ∼ N (µ,Σ),

(B) there exist w∗
1 , ...,w

∗
k ∈ Rd , a random variable ξ ∼ Dξ

independent of x (not necessarily Gaussian), and an unknown
link function g : Rk+1 → Y such that

ηi = ⟨w∗
i , x⟩, y = g(η1, ..., ηk , ξ). (0.8)
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Examples

1. Y = R and y = ⟨w∗, x⟩+ ξ

2. Y = R and

y = ⟨w∗, x⟩︸ ︷︷ ︸
linear signal

+ |x1| · cos x2︸ ︷︷ ︸
non-linear term

+ x3 · ξ︸ ︷︷ ︸
heteroscedasticity

3. Y = {−1, 1} and

Pr (y = 1) = sigmoid(⟨w∗, x⟩)

4. g is a neural network with k hidden units in the first layer
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Model Complexity

Let W = [w∗
1 , ...,w

∗
k ] ∈ Rd×k and Q = I −W (W TΣW )−1W TΣ.

x⊥ = QT x is the components of x that is independent of y

▶ Q2 = Q: Q is a projection

▶ QTΣW = 0: QT x and W T x are independent

▶ y only depends on x through W T x

Let Cδ be a continuous function such that with probability at least
1− δ/4 over x⊥ ∼ N

(
0,Σ⊥), uniformly over all w ∈ Rd ,

⟨w , x⊥⟩ ≤ Cδ(w). (4.9)
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Moreau Envelope Generalization Theory

Moreau envelope of f with parameter λ ≥ 0 is defined as

fλ(ŷ , y) = inf
u

f (u, y) + λ(u − ŷ)2

and is usually viewed as a smooth approximation to the original
function f .

Theorem

Under some mild conditions on f , there exists ϵ = Õ(
√
k/n) such

that w.p. at least 1− δ, for all w ∈ Rd , b ∈ R and λ ≥ 0

Lfλ(w , b) ≤ (1 + ϵ)

(
L̂f (w , b) +

λCδ(w)2

n

)
. (4.10)
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Properties of the Moreau Envelope

▶ if for each y ∈ Y, f is M-Lipschitz with respect to the first
argument, then for any λ ≥ 0

fλ(ŷ , y) ≥ f (ŷ , y)− M2

4λ
. (4.11)

▶ if f is non-negative and for each y ∈ Y,
√
f is

√
H-Lipschitz

with respect to the first argument, then for any λ ≥ 0

fλ(ŷ , y) ≥
λ

λ+ H
f (ŷ , y). (4.12)

▶ for the square loss, squared hinge loss, phase retrieval loss,
and the ReLU loss, it holds that for any λ ≥ 0

fλ(ŷ , y) =
λ

λ+ 1
f (ŷ , y) (4.13)
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Lipschitz loss

Combining (4.10) with (4.11)

Lf (w , b) ≤ (1 + ϵ)

(
L̂f (w , b) + inf

λ≥0

λCδ(w)2

n
+

M2

4λ

)
= (1 + ϵ)

(
L̂f (w , b) +M

√
Cδ(w)2

n

) (4.14)

Examples:

▶ Absolute loss, Logistic loss / Binomial GLM, Hinge loss

▶ Huber’s loss, modified Huber’s loss

Lijia Zhou A Statistical Learning Theory for Models with High Complexity 19



Square-root Lipschitz loss

Combining (4.10) with (4.12)

Lf (w , b) ≤ (1 + ϵ)

(
inf
λ≥0

λ+ H

λ
L̂f (w , b) +

(λ+ H)Cδ(w)2

n

)

= (1 + ϵ)

(√
L̂f (w , b) +

√
H Cδ(w)2

n

)2

(4.15)

For any 1-Lipschitz σ : R → R (e.g., identity, absolute value,
ReLU, sigmoid, tanh), the following loss functions are 1
square-root Lipschitz:

▶ f (ŷ , y) = (σ(ŷ)− y)2

▶ f (ŷ , y) = (1− σ(ŷ)y)2+
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ℓ2 Benign Overfitting for Linear regression, Max-Margin
Classification, ReLU regression and Phase Retrieval

By Cauchy-Schwarz, we have

⟨w , x⊥⟩ ≤ ∥w∥2∥x⊥∥2 ≈ ∥w∥2
√

tr(Σ⊥)

and so uniformly over all (w , b) ∈ Rd+1

Lf (w , b) ≤ (1 + ϵ)

(√
L̂f (w , b) + ∥w∥2

√
tr(Σ⊥)

n

)2
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Norm bound

Defintion

The effective rank of a covariance matrix Σ is defined as

R(Σ) =
tr(Σ)2

tr(Σ2)
.

Theorem

Fix any (w ♯, b♯) ∈ Rd+1. There exists

ρ ≲

√
k log(n/k)

n
+ log

(
1

δ

)(
1√
n
+

1√
R(Σ⊥)

+
n

R(Σ⊥)

)
,

such that with probability at least 1− δ, it holds that

min
(w ,b)∈Rd+1:L̂f (w ,b)=0

∥w∥2 ≤ ∥w ♯∥2+(1 + ρ)

√
nLf (w ♯, b♯)

tr(Σ⊥)
. (4.16)
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Generalization Bound

Corollary

Let ŵ , b̂ = argmin(w ,b):L̂f (w ,b)=0 ∥w∥2 be the minimal norm
interpolant. With probability at least 1− δ, it holds that

Lf (ŵ , b̂) ≤ (1 + ρ)

(√
Lf (w ♯, b♯) + ∥w ♯∥2

√
tr(Σ⊥)

n

)2

. (4.17)

We establish consistency when

∥w ♯∥2

√
tr(Σ⊥)

n
→ 0,

k

n
→ 0,

n

R(Σ⊥)
→ 0 (4.18)
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Examples:

▶ Junk feature:

Σ =

(
Ik 0
0 1

d Id

)
=⇒ Σ⊥ =

1

d
Id

▶ Gaussian kernels on the hypersphere: by rotation invariance,
Σ has a block diagonal structure and the i-th block has
dimension Od(d

i )

Consider the scaling n = d l where l /∈ N, then we can take
k = O(d⌊l⌋) = o(n). Moreover, it holds that
R(Σ⊥) = Ω(d⌈l⌉) = ω(n)
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Minimal Nuclear Norm in Matrix Sensing

Given (i.i.d. standard Gaussian) random measurement matrices
A1, ...,An and measurements y1, ..., yn given by yi = ⟨Ai ,X

∗⟩+ ξi
where ξ is independent of Ai , and Eξ = 0 and Eξ2 = σ2, we hope
to reconstruct the matrix X ∗ ∈ Rd1×d2 with sample size n ≪ d1d2.

We assume X ∗ has rank r and we consider the minimal nuclear
norm solution

X̂ = argmin
X∈Rd1×d2 :⟨Ai ,X ⟩=yi

∥X∥∗. (4.19)

The dual norm of nuclear norm is the spectral norm and so

σ2 + ∥X̂ − X ∗∥2F = L(X̂ ) ≤ (1 + o(1))
∥X̂∥2∗(E∥A∥)2

n
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Nuclear norm bound

Similar analysis shows that

∥X̂∥∗ ≤ ∥X ∗∥∗ +
(
1− n

d1d2

)−1/2 E∥A∥∗
E∥A∥2F

√
nσ

and so

∥X̂ − X ∗∥2F + σ2

≤ (1 + o(1))

(
∥X ∗∥∗E∥A∥√

n
+

(
1− n

d1d2

)−1/2 E∥A∥∗E∥A∥
E∥A∥2F

σ

)2

.
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Low-Rank Matrix Recovery

Importantly, since X ∗ has rank r , we have ∥X ∗∥∗ ≤
√
r∥X ∗∥F .

Moreover, it is well-known that E∥A∥ ≈
√
d1 +

√
d2. Rearranging

the uniform convergence bound, we obtain

E

[
∥X̂ − X ∗∥2F

∥X ∗∥2F

]
≤

((
1− n

d1d2

)−1(E∥A∥∗E∥A∥
E∥A∥2F

)2

− 1

)
σ2

∥X ∗∥2F

+ O

(
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X ∗∥F

)
.

In the noiseless case σ = 0, we recover the classical rate

E

[
∥X̂ − X ∗∥2F

∥X ∗∥2F

]
≲

r(d1 + d2)

n
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Benign Matrix Sensing

The singular values of A concentrates to the square root of the
Marchenko-Pastur law if d1/d2 converge to a constant. However,

by Holder’s inequality, E∥A∥∗E∥A∥
E∥A∥2F

can only converge to 1 when the

singular values are all the same. This happens if and only if

d1/d2 → {0,∞}. Therefore, when the signal to noise ratio
∥X∗∥2F
σ2

is constant, we obtain consistency when the following holds

▶ r(d1 + d2) = o(n)

▶ d1d2 = ω(n)

▶ d1/d2 → {0,∞}

This can happen for example when

r = Θ(1), d1 = Θ(n1/2), d2 = Θ(n2/3).
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Local Gaussian width

We define a mapping ϕ : Rd → Rk+1 by

ϕ(w) := (wTΣW , ∥w∥Σ⊥). (4.20)

It is obvious that for w ∈ K

⟨w , x⊥⟩ ≤ max
w ′∈K:ϕ(w ′)=ϕ(w)

⟨w ′, x⊥⟩

≈ E
[

max
w ′∈K:ϕ(w ′)=ϕ(w)

⟨w ′, x⊥⟩
]
:= C (ϕ(w))

(4.21)
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Optimal Complexity Control

Suppose that f is convex. If ŵ , b̂ is the constrained ERM for any
bounded convex set, then it holds that

L̂f (ŵ , b̂) ≈ max
λ≥0

Lfλ(ŵ , b̂)− λC (ϕ(ŵ))2

n
.

In particular, if fλ = λ
1+λ , then

L̂f (ŵ , b̂) ≈
(√

Lf (ŵ , b̂)− C (ϕ(ŵ))√
n

)2

+

and so

L̂f (ŵ , b̂) ≈ 0 =⇒ Lf (ŵ , b̂) ≈ C (ϕ(ŵ))2

n
.
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Single-Index Neural Network

Let σ(x) = max(x , 0) be the ReLU activation function, N be the
number of hidden units, and θ = (w , a, b) ∈ Rd+2N parameterize
the class of simple neural nets:

hθ(x) :=
N∑
i=1

aiσ(⟨w , x⟩ − bi ).

If we use the square loss or the squared hinge loss, we are
essentially minimizing

f (ŷ , y , θ) =

(
N∑
i=1

aiσ(ŷ − bi )− y

)2

or

(
1−

N∑
i=1

aiσ(ŷ − bi )y

)2

+

and
√
f is maxj∈[N]

∣∣∣∑j
i=1 ai

∣∣∣ Lipschitz if we sort the bi ’s.
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Generalization Bound

The square-root Lipschitz parameter depends on the model θ, but
we can still show that for some ϵ = Õ

(
k+N
n

)
, it holds that

L(θ) ≤ (1 + ϵ)

√L̂(θ) +
maxj∈[N]

∣∣∣∑j
i=1 ai

∣∣∣ ∥w∥E∥x⊥∥∗
√
n

2

.

For linear models, we measure the complexity by the norm of the
coefficients. For (single-index) neural net, we can measure by

max
j∈[N]

∣∣∣∣∣
j∑

i=1

ai

∣∣∣∣∣ ∥w∥.
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Universality

▶ omniscient risk estimator: xi = Σ1/2zi where

zi has i.i.d. coordinates with zero mean, unit variance, and
bounded 12th moments, as in Wu and Xu (2020)
zi has independent coordinates with zero mean, unit variance,
finite moments of all order, as in Hastie et al (2020)

▶ universality of Gaussian Minimax Theorem

can be proven in similar settings using Lindeberg’s method, as
in Han and Shen (2022)

▶ Gaussian equivalence

random features: xi = σ(Wzi ) where W is a randomly
initialized matrix and zi is standard Gaussian, as in Hu and Lu
(2022)
kernel regression with K (x , x ′) = h(⟨x , x ′⟩) on uniform
distribution and x is uniform on hypersphere or boolean
hypercube, as in Misiakiewicz (2022)
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Experiments: Regression
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Experiments: Classification
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Failure of Universality

Suppose that D is given by

(A) x = (x|k , x|d−k) where x|k ∼ N (0,Σ|k) and there exists a

function h : Rk → R such that

x|d−k = h(x|k) · z (0.22)

where z ∼ N
(
0,Σ|d−k

)
is independent of x|k .

(B) there exists a function g : Rk+1 → R such that

y = g(x|k , ξ) (0.23)

where ξ ∼ Dξ is independent of x .

Lijia Zhou A Statistical Learning Theory for Models with High Complexity 36



Failure of Universality

It can be shown that

∥ŵ∥22 · E∥x|d−k∥22
n

→ inf
w

E[h(x|k)2] · E

[(
y − ⟨w , x⟩
h(x|k)

)2
]

However, if we choose Σ|d−k to be benign, then the Gaussian
theory would predict

inf
w

E[(⟨w , x⟩ − y)2] ≤ inf
w

E[h(x|k)2] · E

[(
y − ⟨w , x⟩
h(x|k)

)2
]

Lijia Zhou A Statistical Learning Theory for Models with High Complexity 37



Counterexample

Consider k = 1, x1 ∼ N (0, 1), h(|x1|) = 1 + |x1| and y = h(|x1|)2.
Then it holds that

inf
w

E[(⟨w , x⟩ − y)2]− inf
w

E[h(x|k)2] · E

[(
y − ⟨w , x⟩
h(x|k)

)2
]

= var(h(|x1|)) > 0.

In this case, we cannot pretend that x is Gaussian because

▶ the complexity function Cδ is defined like a worst-case
Rademacher complexity

▶ for Gaussian data it’s not that different from the expected
Rademacher complexity because the norm of the tail of x
concentrates

▶ the tail of x does not concentrate in this counterexample!

Lijia Zhou A Statistical Learning Theory for Models with High Complexity 38



Summary

We propose a statistical learning theory for models with high
complexity. We use it to explains benign overfitting in:

▶ linear regression (or kernel regression),

▶ max-margin classification,

▶ phase retrieval, ReLU regression,

▶ matrix sensing.

This theory is non-asymptotic, requires very mild assumptions, can
be easily adapted to different complexity measure (ℓ1, ℓ2, nuclear
norm, etc) and has the potential to explain even more complex
models such as deep neural nets.

However, this theory requires a Gaussian feature assumption and
universality can fail in unexpected ways.
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