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Interpolation Learning and Double Descent

[Belkin et al, 2019]



• Interpolation: when training error    

• Benign overfitting:  is consistent in many cases: 

L̂(w) =
1
n

∥Y − Xw∥2
2 = 0

ŵ = arg min
L̂(w)=0

∥w∥2 L(ŵ) → σ2

Gaussian Linear Regression Model 

•  iid are the rows of matrix 


•    and  unknown


• Goal: given (X,Y), minimize test error  on fresh sample  


Xi ∼ N(0,Σ) X : n × d

Yi = ⟨Xi, w*⟩ + N(0,σ2) w*

L(w) = E[(Y0 − ⟨X0, w⟩)2] (X0, Y0)

The Theoretical Testbed
[Hastie et al, 2019], [Bartlett et al, 2019], [Belkin et al, 2020], [Negrea et al, 2020], [Chinot-Lerasle, 2020], [Ju et al, 2020], 
[Muthkumar et al, 2020], [Zhou et al, 2020], [Tsigler-Bartlett, 2020], [Bartlett-Long, 2020], [Chinot et al, 2021], …

[Bartlett et al, 2019]



Failure of uniform convergence?

• Conventional method for bounding test error:


•  is a class of “simple” hypotheses containing w. Ex. 


• Unfortunately, this does not work in our setting! [Negrea et al, 2020], [Zhou et 
al, 2020], [Bartlett-Long 2020]


• “Generalization gap” term is larger than .

𝒦 𝒦 = {w : ∥w∥2 ≤ B}

L(ŵ) − L̂(ŵ) = σ2

L(w) ≤ L̂(w) + sup
w∈𝒦

L(w) − L̂(w)

Test error Train Error Generalization Gap



A common sentiment: classical learning theory may not be able to explain modern ML & 
interpolation learning, uniform convergence is obsolete. See also [Neyshabur et al, 2015], 
[Zhang et al, 2017], [Nagarajan-Kolter, 2019], [Bartlett-Long, 2020], [Belkin, 2021] …



Uniform convergence of interpolators

• Worst-case error among all interpolators with low complexity.

 L(ŵ) ≤ sup
w∈𝒦,L̂(w)=0

L(w)

{w : ∥w∥2 ≤ B} {w : ∥w∥2 ≤ B, L̂(w) = 0}



Uniform convergence of interpolators has been used in the noiseless 
setting since at least [Vapnik ’82]. Below: [Devroye et al ‘96] 



Conjecture [Zhou et al, 2020]:

sup
∥w∥2≤B,L̂(w)=0

L(w) ≤
B2𝔼∥x∥2

n
+ o(1)

• controlling the 
generalization error 
reduces to calculating 
the least amount of 
norm required to 
perfectly fit the data

• [Zhou et al, 2020]: In prototypical “junk features” model, proved conjecture and 
used to explain benign overfitting in this model.


In this paper we prove the conjecture for arbitrary Gaussian data as a special 
case of a more general uniform convergence result in terms of Gaussian width. 
Based on this, we recover the benign overfitting conditions of [Bartlett et al, 2019], 
and generalize them to arbitrary norms such as .ℓ1



Main generalization bound

• Theorem (informal): for any covariance matrix , for any splitting 
 such that , it holds with high probability that

Σ = 𝔼[xxT]
Σ = Σ1 ⊕ Σ2 rank(Σ1) = o(n)

 sup
w∈𝒦,L̂(w)=0

L(w) ≤ (1 + o(1)) ⋅
W(Σ1/2

2 𝒦)2

n

 W(𝒦) = 𝔼H∼N(0,Id) [ sup
w∈𝒦

|⟨H, w⟩ |]

• Gaussian width: natural measure of “complexity” of a set, long used in 
generalization theory (e.g. [Bartlett-Mendelson, 2002])



 norm ball:   ℓ2 𝒦 = {w : ∥w∥2 ≤ B}

because W(Σ1/2
2 𝒦) = B ⋅ 𝔼H∼N(0,Id)∥Σ1/2

2 H∥ ≤ B2𝔼∥x∥2

 sup
∥w∥≤B,L̂(w)=0

L(w) ≤ (1 + o(1))
B2𝔼∥x∥2

n

• Confirms the prediction from [Zhou et al, 2020] 


• Recovers the benign overfitting conditions of [Bartlett et al, 2019] 


because we can prove ∥ŵ∥2 ≤ (1 + o(1))
σ2n

𝔼x∼N(0,Σ2)∥x∥2



A new application:  norm ball    ℓ1

• What about regularizers besides ?


•  norm is key to LASSO, Adaboost, compressed sensing…


• Not so easy to analyze (no closed form)! Is it consistent? [Ju et al, 2020].


• Theorem (this work): Minimum  norm interpolator (basis pursuit) is 
consistent in junk features model (small number of signal features, large 
number of small irrelevant “junk features”). Follows from general ‘benign 
overfitting’ conditions.

ℓ2

ℓ1

ℓ1

junk features: Σ = [
IdS

0
0 αIdJ], dJ → ∞, α → 0



Summary

• In linear regression, we showed via uniform convergence of interpolators that            
the norm, and more generally Gaussian width, controls generalization error of 
interpolators and explains benign overfitting.


• Forthcoming work: extension to near-interpolators via “optimistic rates” theory


• Why do we care about uniform convergence? 

• unify classical statistical learning theory with modern practice in ML


• can extend to settings where a direct analysis is difficult (ex:  interpolation) 
and highlight the “key” to good generalization (ex: low norm)


• implicit regularization + uniform convergence can be a principled method to 
study more general overparameterized models, e.g. deep networks

ℓ1



Thanks for listening!


