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Interpolation Learning and Double Descent
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Figure 4: Double descent risk curve for fully connected neural network on MNIST.

[Belkin et al, 2019]



The Theoretical Testbed

[Hastie et al, 2019], [Bartlett et al, 2019], [Belkin et al, 2020], [Negrea et al, 2020], [Chinot-Lerasle, 2020], [Ju et al, 2020],
[Muthkumar et al, 2020], [Zhou et al, 2020], [Tsigler-Bartlett, 2020], [Bartlett-Long, 2020], [Chinot et al, 2021], ...

. Interpolation: when training error L(w) = —||Y — XWH% =0
n
. Benign overfitting: w = arg min [|w||, is consistent in many cases: L(w) — o’
L(w)=0
[Bartlett et al, 2019]



Failure of uniform convergence?

* Conventional method for bounding test error:

Liw) < i(w) + sup |L(w) — i(w)|
WERX

Test error Train Error Generalization Gap

» J is aclass of “simple” hypotheses containing w. Ex. # = {w : ||w||, £ B}

* Unfortunately, this does not work in our setting! [Negrea et al, 2020], [Zhou et
al, 2020], [Bartlett-Long 2020]

. “Generalization gap” term is larger than L(W) — L(W) = 6>



Generalization theory for interpolation?

What theoretical analyses do we have?

VC-dimension/Rademacher complexity/covering/ gin bounds.

» Cannot deal with interpolated classifiers en Bayes risk is non-zero.

» Generalization gap cannot be bound w empirical risk is zero.

Regularization-type analyses ikhonov, early stopping/SGD, etc.)

» Diverge as A—-0 for fi

Algorithmic stab4

» Does not ply when empirical risk is zero, expected risk nonzero.
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Classical smoothing methods (i.e., Nadaraya-Watson).

_‘1 Oracle bounds

bound

Lp(f) < Ls(f)
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A common sentiment: classical learning theory may not be able to explain modern ML &
interpolation learning, uniform convergence is obsolete. See also [Neyshabur et al, 2015],
[Zhang et al, 2017], [Nagarajan-Kolter, 2019], [Bartlett-Long, 2020}, [Belkin, 2021] ...




Uniform convergence of interpolators

 Worst-case error among all interpolators with low complexity.

Liw)< sup L(w)

weH ,L(w)=0
“‘ \

.
(w: lwll, < B) {w: [wll, < B,L(w) = 0}

\



Uniform convergence of interpolators has been used in the noiseless
setting since at least [Vapnik ’82]. Below: [Devroye et al ‘96]

based on the random permutation argument developed in the original proof of the
Vapnik-Chervonenkis inequality (1971).

PROOF. For ne < 2, the inequality is clearly true. So, we assume that ne > 2. First
observe that since infyec L(¢) = 0, L,(¢}) = 0 with probability one. It is easily

seen that _
L(¢,) = sup |L(¢) — Ln(®)l. —
¢:Ln(¢)=0
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Conjecture [Zhou et al, 2020]:

* controlling the

2 2 generalization error
B7E||x|| reduces to calculating
sup L(w) < + o(1)
Iwll,<B,L(w)=0 n required to
perfectly fit the data

* [Zhou et al, 2020]: In prototypical “junk features” model, proved conjecture and
used to explain benign overfitting in this model.

In this paper we prove the conjecture for arbitrary Gaussian data as a special
case of a more general uniform convergence result in terms of Gaussian width.
Based on this, we recover the benign overfitting conditions of [Bartlett et al, 2019],

and generalize them to arbitrary norms such as 7.



Main generalization bound

* Gaussian width: natural measure of “complexity” of a set, long used In
generalization theory (e.g. [Bartlett-Mendelson, 2002])

W(ZE) = Epnour l sup | (H, W>|]
weX

e Theorem (informal): for any covariance matrix 2 = C[xx ],
, It holds with high probability that

W(21/2%)2
sup Lw)<({+o0(l))  ——

weH L(w)=0 n




£>normball: # = {w: ||w||, < B}

B E||x||*
sup  L(w) < (1 4+ 0(1))

Iwl|<B,L(w)=0 n

because W(ZY*F) = B - Eyno.1) 12" HIl < \/B2 = (1x||%

e Confirms the prediction from [Zhou et al, 2020]

* Recovers the benign overfitting conditions of [Bartlett et al, 2019]

62n

because we can prove ||w||* < (1 + o(1))

—x~N(0,2,) [ ]2




A new application: £, norm ball

» What about regularizers besides ¢,?

o [ ; horm is key to LASSO, Adaboost, compressed sensing...

* Not so easy to analyze (no closed form)! Is it consistent? [Ju et al, 2020].

 Theorem (this work): Minimum £, norm interpolator (basis pursuit) is

consistent in junk features model (small number of signal features, large

number of small irrelevant “junk features”). Follows from general ‘benign
overfitting’ conditions.



Summary

* |n linear regression, we showed via uniform convergence of interpolators that
the norm, and more generally Gaussian width, controls generalization error of

iInterpolators and explains benign overfitting.

 Forthcoming work: extension to near-interpolators via “optimistic rates™ theory

 Why do we care about uniform convergence?

e unify classical statistical learning theory with modern practice in ML

» can extend to settings where a direct analysis is difficult (ex: ; interpolation)
and highlight the “key” to good generalization (ex: low norm)

* implicit regularization + uniform convergence can be a principled method to
study more general overparameterized models, e.g. deep networks



Thanks for listening!




